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The cyclic nucleotide phosphodiesterases comprise a 
family of enzymes whose role is to regulate cellular 
levels of the second messengers, cAMP and cGMP, by 
their hydrolysis to inactive metabolites.1 cAMP-specific 
phosphodiesterase type IV (PDE4) has been shown in 
a number of studies to be the principal PDE isotype 
present in inflammatory cells.lb'2 These findings, as 
well as the observations that increases in cAMP levels 
in monocytes and macrophages suppress the activation 
of inflammatory cells,3 have led to a considerable effort 
aimed at the discovery of potent and selective inhibitors 
of PDE4 for the treatment of asthma and other inflam­
matory diseases.4 

The majority of medicinal chemistry directed at PDE4 
inhibition has been initiated from the structure of 
rolipram [(±)-4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-
pyrrolidinone] (I),5 an antidepressant drug known to be 
a selective inhibitor of PDE4. As a lead compound, the 
rolipram structure is appealing for a number of reasons. 
The structure is relatively simple, displaying limited 
functionality that can interact directly with the enzyme. 
Additionally, the structure can be divided into two 
regions of near equal functional density, the aromatic 
catechol ether and the pyrrolidinone ring, allowing one 
to adopt a modular approach in efforts to determine the 
critical structural elements that manifest PDE4 inhibi­
tory activity. Indeed, structure—activity relationships 
within both of these regions of the rolipram structure 
have been reported.6,7 

Despite the breadth of research activity surrounding 
PDE4, the atomic structure of the enzyme's catalytic site 
remains unknown. Therefore, an understanding of the 
nature in which a PDE4 inhibitor interacts with the 
enzyme surface continues to be guided by traditional 
structure—activity methods of medicinal chemistry. In 
this communication we describe the synthesis and 
biological evaluation of trans-(±)-methyl 3-acetyl-4-[3-
(cyclopentyloxy)-4-methoxyphenyl]-3-methyl-l-pyrrolidi-
necarboxylate (2, GW3600), a member of a new class of 
extremely potent inhibitors of PDE4. We have used 
spectral and computational methods to construct a 
pharmacophore model of 2 and its derivatives, which 
accounts for the significant enhancement in potency in 
this class of inhibitors. 
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The synthesis of 2 is shown in Scheme 1. (2?)-3-[3-
(Cyclopentyloxy)-4-methoxyphenyl]-2-methylpropionic 
acid (3)8 was converted to methyl ketone 4 in good yield 
through the intermediacy of the corresponding Weinreb 
amide.9 Dipolar cycloaddition between 4 and the azome-
thine ylide derived from iV-benzyl-iV-(methoxymethyl)-
iV-[(trimethylsilyl)methyl]amine afforded the iV-ben-
zylpyrrolidine 5.10 T rea tment of 5 with methyl chloro-
formate in acetonitrile delivered 2. When tested for its 
ability to inhibit cAMP hydrolysis by h u m a n P D E 4 , U 2 
was found to have an inhibition constant CKi) of 1.3 
nM,1 2 displaying far greater potency t han its desmethyl 
analog 6,7g which has a K1 of 33 nM. Likewise, the C3-
methyl methyl ester 7,13 was found to possess greater 
inhibitory activity t han its C3-desmethyl analog 8 
(Table l).7e 

A possible explanation for the enhanced activity of 2 
is that the C3-methyl group interacts directly with the 

Scheme 1. Synthesis of PDE4 Inhibitor 2° 
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0 Reagents and conditions used: (a) CDI; CH3(CH3O)NH-HCl 
(82%); (b) CH3Li, ether (96%); (c) 2V-benzyl-2V-(methoxymethyl)-
Aq(trimethylsilyl)methyl]amine, TFA, CH2Cl2 (58%); (d) ClCO2CH3, 
CH3CN, 80 0C (64%). 
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Table 1. Pyrrolidine C3 Substitution and PDE4 Inhibition" 
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PDE4 
Ki (fiU) 

0.033 
0.001 
0.159 
0.003 
0.010 
0.550 
0.086 
0.224 
0.037 
0.110 
0.100 
0.220 

7lc 

3 
3 
3 
3 
3 
3 
3 
1 
3 
4 
1 
9 

0 A detailed protocol for this assay is described in ref 7f. b All 
test compounds gave satisfactory spectral and elemental data. 
c Number of assays conducted. 

PDE4 enzyme. This explanation, however, is difficult 
to reconcile with the observation that, in the absence 
of the acetyl group, the presence or absence of the C3-
/3-methyl has a minimal effect on enzyme inhibition 
(Table 1, entries 10 and H).1 4 The methyl group 
appears instead to be exerting an indirect effect, en­
hancing the ability of the C3 geminal acetyl group to 
interact with the enzyme. Such an enhancement could 
be electronic in nature, for example by altering the 
solvation environment of the acetyl group.15 Alterna­
tively, there may be a conformational effect in which 
the methyl group alters favorably the position and 
orientation of the acetyl group, resulting in an enhanced 
interaction with the enzyme. 

Conformational search techniques identified two gen­
eral conformations of the pyrrolidine ring in 2, distin­
guished by whether the ring is in an endo or exo 
conformation as defined by the spatial relationship 
between C4 and the acetyl group.16 The C4-endo 
conformation is characterized by both the aryl ring and 
the acetyl group being pseudoequatorially disposed, thus 
placing the C3-/3-methyl group in an pseudoaxial posi­
tion. Alternatively, in the C4-exo conformation, the aryl 
ring, acetyl, and methyl groups are in pseudoaxial, 
pseudoaxial, and pseudoequatorial positions, respec­
tively (Figure 1). MM3 calculations on ketone 6 (R = 
H) indicate that C4-endo is favored relative to C4-exo 
by approximately 2.3 kcal/mol, predicting that C4-exo 
is only sparsely populated in the ground state. Similar 
calculations on 2 (R = CH3) reveal that the two 
conformers are energetically equivalent (AE « 0 . 1 kcal/ 
mol).17 

NMR studies on 2 and 6 were conducted in an effort 
to confirm the existence and relative populations of the 
C4-endo and C4-exo conformers.18 The NOESY spec­
trum of 2 revealed three NOE interactions that can be 
considered strong evidence for the C4-exo conformation. 
Namely, we observe interactions between the C3-methyl 
and Hb, between the C3-methyl and He, and between 
the 2'- and 6'-aromatic protons and Ha (see Figure 1). 
Evidence for the C4-endo conformation in 6 derives from 

C4-«ro 

Figure 1. Conformational equilibria of PDE4 inhibitors 2 (R 
= CH3) and 6 (R = H). 
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Figure 2. (a) Preferred C3-acetyl rotational isomers in 6. (b) 
Preferred C3-acetyl rotational isomers in 2. 

two NOE interactions displayed between the C3-me-
thine and Hd and between Hb and He. Conversely, there 
is no evidence that supports the C4-exo conformation 
in the NOESY spectrum of 6. Absent from the NOESY 
spectrum of 6 are interactions between the acetyl 
methyl and the ring protons, Hb and He, interactions 
that appear strongly in the NOESY spectrum of 2. 

The NMR evidence supports two distinct mechanisms 
by which the C3-/3-methyl group potentiates the activity 
of 2. Underlying these two mechanisms is the assump­
tion that the catechol ether is the principal pharma­
cophore element whose position is of primary impor­
tance in a complex with PDE4.6a'c One possible 
mechanism is rotational isomerism about the C3— 
C(acetyl) bond. It is well established that carbonyl 
groups prefer to eclipse adjacent C-C bonds.19 The 
favored orientation of the acetyl carbonyl in 6 should 
therefore be approximately anti to the C3—H bond 
(Figure 2a), which accounts for the absence of NOE's 
between the acetyl methyl and the ring protons, Hb and 
He, in its spectrum. By analogy to methyl isopropyl 
ketone, the energetic preference for this conformation 
relative to the conformer in which the acetyl carbonyl 
eclipses the C3-hydrogen should approximate 1.2 kcal/ 
mol. Conversely, in compound 2 the rotamer in which 
the acetyl carbonyl eclipses the C3-methyl can be 
regarded as an energy minimum (Figure 2b, middle). 
The rotational barrier for esters is calculated to be less 
than that for ketones.19 Therefore, the greater differ­
ence in activity between esters 7 and 8 versus ketones 
2 and 6 weakens this argument. 

A second and more compelling rationale for the 
notable effect of the C3-/?-methyl group is that it is 
serving as a conformational switching element for the 
pyrrolidine ring. By virtue of its presence on the ring, 
the energy barrier of pseudorotation from the C4-endo 
to the C4-exo conformer is effectively eliminated. In­
terestingly, the C4-exo conformer of 2 is best fitted with 
rolipram when an overlap is made between the acetyl 
carbonyl and the lactam carbonyl in rolipram (Figure 
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F i g u r e 3 . Overlay of the C4-exo conformer of 2 (green) and 
rolipram (yellow). The overlay is based on RMS fitting of the 
respective carbonyl groups and the catechol oxygens. 

Table 2. PDE Isozyme Selectivity Data for 2 

isozyme K, ("M) 

bovine aorta 
BTPDE21A-
human pulmonary artery 
human trachea 
bovine retina 
HSPDE7A" 

>100 
>100 
>100 
>100 
>100 

7.9 

° Cloned enzyme expressed in yeast and purified. New Genbank 
designation is given (see ref 11, Beavo, J . A. et al.). 

3). O n e would p red ic t from t h i s mode l t h a t t h e i n c r e a s e 
i n po tency b y C 3 - m e t h y l s u b s t i t u t i o n s h o u l d n o t b e 
l imi ted to 2 , b u t shou ld be g e n e r a l for o t h e r c o m p o u n d s 
in t h i s s e r i e s t h a t p r e s e n t a s u i t a b l e h y d r o g e n b o n d 
accep to r a t t h e s i t e occupied by t h e C3 ace ty l g r o u p . 
Indeed , we h a v e found t h i s to be t h e case (Tab le 1, 
e n t r i e s 1—9). I n a d d i t i o n to k e t o n e 2 a n d e s t e r s 7 a n d 
1 1 , a lcohol 13 is a p p r o x i m a t e l y a n o r d e r of m a g n i t u d e 
m o r e p o t e n t t h a n i ts C 3 - d e s m e t h y l a n a l o g 12 ( e n t r i e s 
8 a n d 9) . 2 0 Add i t iona l ly , t h e r e i s ev idence for a g e n e r a l 
conformat iona l effect d u e to C 3 g e m i n a l d i s u b s t i t u t i o n . 
K e t o n e 9 , wh ich h a s a C3-/3-ethyl g r o u p , is a lso a 
s ignif icant ly more p o t e n t i nh ib i t o r t h a n 6, a lbe i t 10-fold 
l ess p o t e n t t h a n 2 . W e s u g g e s t t h a t t h e difference in 
ac t iv i t i e s b e t w e e n 2 a n d 9 is t h e r e s u l t of a n a d d i t i o n a l 
a n d u n f a v o r a b l e i n t e r a c t i o n i m p o s e d on t h e e n z y m e 
ac t ive s i te by t h e l a r g e r e thy l g r o u p . F ina l l y , w h i l e 
t h e r e i s a n i n c r e a s e in po t ency w i t h C3-/3-methyl 
s u b s t i t u t i o n in a l l t h e e x a m p l e s of T a b l e 1, c l ea r ly t h e 
SAR becomes m o r e s e n s i t i v e in t h e C3-/3-methyl s e r i e s . 

Ke tone 2 d e m o n s t r a t e d g r e a t e r t h a n 1000-fold selec­
t iv i ty for inh ib i t ion of P D E 4 v e r s u s P D E ' s 1, 2 , 3 , 5, 6, 
a n d 7 (Tab le 2) . 2 1 I n o u r ce l l -based a s s a y s , c o m p o u n d 
2 inh ib i t ed T N F - a sec re t ion i n b o t h a c t i v a t e d m u r i n e 
m a c r o p h a g e s a n d a c t i v a t e d h u m a n p e r i p h e r a l blood 
monocy te s 2 2 w i t h ICso's of < 1 0 a n d 7 1 n M , respec t ive ly , 
c o m p a r i n g favorab ly to r o l i p r a m , wh ich h a s ICso's of 42 
a n d 320 n M in t h e s e s a m e a s s a y s . E x t e n d i n g t h e s e 
a s s a y s to a n in vivo s e t t i n g , i n t r a v e n o u s a d m i n i s t r a t i o n 
of 2 to mice w h o s e s e r u m T N F - a levels w e r e r a i s e d b y 
s u b c u t a n e o u s l ipopo lysaccha r ide (LPS) lowered s e r u m 
T N F - a levels w i t h a n E D 5 0 = 0.5 m g / k g ( r o l i p r a m E D 5 0 

% 0.3 mg/kg) . 

In conclusion w e h a v e discovered a n e w c lass of P D E 4 
inhibi tors , r e p r e s e n t e d by GW3600 (2), which a r e a m o n g 
the m o s t p o t e n t inh ib i to r s r epor ted to da te . W e propose 
t h a t t h e m a r k e d l y i m p r o v e d i n h i b i t o r y ac t iv i ty t h a t 

d i s t i n g u i s h e s t h i s c l a s s of i nh ib i t o r s is d u e to a confor­
m a t i o n a l effect e x e r t e d by i n t r o d u c t i o n of a s ingle 
m e t h y l g r o u p o n t h e p y r r o l i d i n e n u c l e u s . S t u d i e s t h a t 
fu r the r cha rac t e r i ze t h e proposed p h a r m a c o p h o r e model 
a n d e x t e n d t h e s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s w i t h i n 
t h i s c lass of i n h i b i t o r s will be r e p o r t e d in d u e course . 

A c k n o w l e d g m e n t . T h e a u t h o r s t h a n k t h e I C O S 
Corp . (Bothe l l , WA) for s u p p l y i n g t h e P D E 4 t h a t w a s 
u s e d in t h e e n z y m e e x p e r i m e n t s . 
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